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April 30, 2023



Contents

1 Introduction 1

2 Treating data 1

2.1 Address matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Classifying data 9

4 Visualizing data 14

4.1 Delaunay tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Minimum area enclosing ellipse . . . . . . . . . . . . . . . . . . . . . 20

4.3 Local adoptive kernel density estimation . . . . . . . . . . . . . . . . 22

5 Providing data 27

5.1 Differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Choosing ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Truncating laplace noise . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Making the noise unbiased . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Analysing data 34

7 Conclusion 38

References 39

A Density plots privately owned cars 43

B Density plots electric cars 48

C Density plots sport utility vehicles 53



1 Introduction

This paper describes the complete process of analysing vehicle data from the City

of Dortmund. It is meant as a showcase for advanced / state-of-the-art techniques

that could be used by authorities dealing with statistical data. Some ideas shown

can be used to automate cumbersome procedures. Dealing with official statistics

has some unique demands, but the text is written to ensure easy transfer to other

areas where possible.

The paper is organized as follows. Chapter 2 shows the needed data cleaning

techniques used to do address matching and missing data imputation. Chapter 3

continues with the task of classifying cars into segments. Visualization techniques

based on kernel density estimation are described in chapter 4. Chapter 5 provides a

proposal how to publish high resolution spatial data in a privacy preserving manner.

Spatial analysis by the means of the Kantorovich distance can be found in chapter

6. Chapter 7 concludes the analysis.

Special thanks should be given to the City of Dortmund’s employees for providing

the required data access. All data processing has been done with the statistical

software R (R Core Team, 2023) unless stated otherwise.

2 Treating data

This chapter provides some background information to understand the available

data as well as needed data cleaning steps. Vehicle data is available from the City

of Dortmund’s database systems. Dortmund is a metropolitan city in the western

part of Germany that has currently (2023) a population of about 600,000 people

and 300,000 cars. The city’s extend is about 20km in north-south as well as east-

west direction. Vehicle administration in Germany is primarily done by each of the

about 11,000 municipalities separately. In addition, municipal data is shared with

the federal vehicle office (KBA). In Germany car insurance is mandatory. Insurance

companies report their policies to the federal office, which in return forwards the

information back to the municipalities.

This decentralized structure implies that every issue raised in this paper is only

valid for the City of Dortmund, though other municipalities may share similar prob-

lems. The first problem is undocumented legacy software systems, which somehow

work, but it is unknown how. This requires “reverse engineering” the data gen-

erating process to understand the database tables. The records are transaction

based. Every transaction (e.g. change of insurance, ownership, registration plate,

theft, etc.) yields a new record. Every record has a validity date attached (e.g.

valid till “01.01.2099” means currently valid record). This implies that old records
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are retroactively changed. A typical record has columns about the owner’s name,

address, date of birth, owner type (private, or non-private entity), the car’s man-

ufacturer ID, model ID, vehicle identification number (VIN), mass, date of first

registration, top speed, vehicle type (i.e. car, motorbike, lorry, trailer), date of

record creation as well as validity date. The process of identifying vehicles reg-

istered at a cut-off date is constructed as finding all records for a specific vehicle

(identified by VIN) and then looking if a record exists where the date of record

creation is before the cut-off date and the validity date is after the cut-off date. A

VIN is a in ISO 3779 standardized 17-digit alphanumeric code uniquely identifying

every vehicle since the 1980s. The VIN is engraved into a vehicle’s chassis and can

not be changed. Strangely, the dataset contains records with invalid VINs (e.g.

“0001”). Those records (about 2,000 to 3,000 at every single point in time) have

been discarded from the analysis as there is no way to reliably tell those vehicles

apart. Querying the database for past data returned plausible results back to the

year 2014. Counts prior to 2014 are incorrect. Obviously old records are purged

form the database, but there is no documentation available on when records are

deleted.

In addition, there is a second database table with technical information (i.e.

length, width, and height of vehicle), which is merged into the dataset. The tech-

nical database sometimes includes multiple records per vehicle. In those cases the

record having the least amount of missing values is selected. The federal vehicle

office provides supplementary data (KBA, 2023b) on vehicle mass, number of seats

and axles, engine output, energy source and model name as text. The KBA no-

toriously changes their website links without redirections. To prevent link rot, all

references have been changed to the Internet Archive’s cached versions. Unfortu-

nately the KBA’s data is only available as a huge 870 page long pdf-file. In 2012 legal

procedures based on the freedom of information act were initialized to get access to

a machine-readable version of the pdf (Frag den Staat, 2012). The KBA’s on first

sight absurd rebuttal claims that the raw data is not available, but they are willing

to sell them for a price between €300-€400 anyway. This makes sense when con-

sidering that the KBA does not actually have the data (confirmed via phone call).

All data processing steps have been outsourced to an external service provider. The

pdf is processed by text extraction tools and the information is merged into the

dataset on manufacturer and model ID. In case data differs, the KBA data is pre-

ferred. The municipalities’ vehicle database is maintained manually (e.g. there is

no auto-complete on technical data), which makes mistakes more likely.
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2.1 Address matching

Having covered the temporal and technical aspects, the next problem is the spatial

location of vehicles defined by the owner’s address. There is a general caveat with

non-privately registered vehicles. For example, there are three (IT-) consultancy

contractors head-quartered in Dortmund. Those companies have subsidiaries all over

Germany and many of their employees have company cars, which are all registered

at a single address in Dortmund. Therefore, when analysing spatial distributions,

all non-private vehicles are omitted, because those vehicles most likely never have

been to Dortmund and the number of vehicles is mainly a count of the companies’

country-wide employees.

Spatial information is provided by text strings for city, street and house number.

The dataset has a column called street number, which could provide the street’s ID

(each street has a unique ID) and making the following steps unnecessary. Unfor-

tunately the column is empty and the feature was never implemented. As already

mentioned, there is no autofill feature ensuring correct addresses. Instead, the ad-

dresses have to be matched against a database of all addresses with their corre-

sponding coordinates in ETRS89 / UTM zone 32N coordinate system, which is a

lambert azimuthal equal-area projection (angles are distorted but areas are correct

due to the Earth’s sphere projected onto a plane). Values are measured in meters

making the coordinates easy interpretable. An addresses’ coordinate is actually the

building’s entrance, not its centroid. Plotting maps is done with the R-package sf

(see Pebesma, 2018 and Pebesma and Bivand, 2023).

Matching addresses is a cumbersome but needed procedure, because failed matches

do not appear completely-at-random or at-random. Directly matching fails at

difficult to write street names (missing-not-at-random). For example, the cor-

rect street name “JOSEPH-VON-FRAUNHOFER-STRAßE” is written as “JOS-V.-

FRAUNHOFER-S”, “J.-V.-FRAUENHOFER-STR”, “JOSEF-V.-FRAUNH.-STR.”,

“JOSEPH-V-FRAUNHOFER-S.”, “JOSEPH-V-FRAUENH.-STR.”, “JOS-V-FRAUENHOFER-

STRAßE”, “JOS.-V.-FRAUNHOF.STR.”, “J.-V.-FRAUNHOFER-STR.”. A multi-

stage matching procedure based on string distances is used. The first step is match-

ing the city, the second is matching the street and the last one is matching the house

number. Matching the city is necessary, because the dataset includes addresses in

other cities and even in Poland, Spain and The Netherlands. It is unclear why

this is the case. Some examples of misspelling DORTMUND are “DORMTUND,

DORMUND, DORMTMUND, DO, DORTNMUND”. The special case “DO” as

abbreviation for DORTMUND is handled by a special rule.

Any distance function d measuring the similarity between two strings s, t and u

should satisfy the following axioms (van der Loo, 2014):
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• non negativity d(s, t) ≥ 0

• identity d(s, t) = 0 iff. s = t

• symmetry* d(s, t) = d(t, s)

• triangle inequality* d(s, u) ≤ d(s, t) + d(t, u)

In this case, the “optimal string alignment” method proved to be the most useful

for addresses. It is based on the edit distance, which counts the number of needed

operations to turn one string into another, i.e. insertion, deletion, substitution and

transpositions (e.g. transpose “M” and “T” in “DORMTUND”). Each operation

gets a weight ωi, ωd, ωs and ωt attached to it. Computing the optimal string distance

is done recursively (van der Loo, 2014):

d(s, t) = min



0 if |t|, |s| = 0,

d(s, t1:(|t|−1)) + ωd if |t| ≥ 1,

d(s1:(|s|−1), t) + ωi if |s| ≥ 1,

d(s1:(|s|−1), t1:(|t|−1)) + ωsI(s|s| ̸= t|t|) if |s|, |t| ≥ 1,

d(s1:(|s|−2), t1:(|t|−2)) + ωtI(s|s| ̸= t|t|) if s|s| = t|t|−1 ∧ s|s|−1 = t|t| ∧ |s|, |t| ≥ 2,

where for a string s = “DORTMUND” |s| = 8 is the number of characters, si the

i-th character in s (e.g. s2 = “O”), s1:i is the sub string of the first i characters (e.g.

s1:4 = “DORT”) and I is the indicator function. Depending on the weights ω chosen,

d might not meet the symmetry and triangle inequality demands (e.g. ωi ̸= ωd

violates symmetry). Before the actual string matching is done, all non-characters are

removed from the strings, special characters are replaced (i.e. ä = ae, ü = ue, ö = oe,

ß = ss), the abbreviation “str” is expanded to “strasse” and all strings are converted

to lower case. Matching the city is done with weights ωd = 1, ωi = 1, ωs = 0 and

ωt = 0. For street name matching ωd = 1, ωi = 0.5, ωs = 1 and ωt = 1 is used

because street names are usually abbreviated, which implies weighing insertions

with a lower penalty. String matching is implemented in (van der Loo, 2014)’s

stringdist R-package. After all non-Dortmund addresses have been removed and

the streets are matched on a threshold of the normalised distance d
|s| > 0.9, all

valid house numbers for the matched street are selected. If no direct match on the

numbers can be found, but one within an absolute distance of four, the best matching

number measured by absolute distance is selected. If no such number can be found,

a house number is selected randomly from all valid house numbers for that street.

This is violating procedures used e.g. by the German federal statistics office, which

uses the median house number, but has the advantage of being unbiased. Using

the median house number might cause density spikes at the middle of long streets,

which do not actually exist. For low resolution statistics provided by the federal
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office, this is not an issue, but for high resolution methods used in this paper, the

issue is real. Table 2.1 shows the matching results. Direct match refers to matching

addresses directly without any data processing steps. Sanitized matches are done on

the sanitized strings. Those types of matches can be considered to be correct in all

cases. The category fuzzy match uses the string distance based matching procedure

described above and are highly likely to be correct, but some addresses are certainly

wrongly matched. The last column “no match” refers to addresses, where the City

successfully matched as Dortmund, but the street fuzzy matching score is below the

threshold of 0.9 and thus no coordinates can be allocated. They are omitted from all

spatial analysis in this paper. This should not be an issue as they can be regarded

as missing-completely-at-random and only make up less than 0.5% of all vehicles.

Table 2.1 implies a better data quality for the years 2014, 2015 and 2016. This is

not the case, as additional manual address correction was used for those years. For

data after 2017, this has been omitted because it was not feasible to do so.

Table 2.1: Address qualities in %

year direct match sanitized match fuzzy match no match
2014 99.00 0.10 0.80 0.10
2015 98.90 0.10 0.90 0.10
2016 98.90 0.10 0.90 0.10
2017 94.30 3.80 1.50 0.40
2018 94.30 3.90 1.50 0.40
2019 94.30 4.00 1.40 0.30
2020 94.10 4.30 1.30 0.30
2021 94.20 4.20 1.20 0.30
2022 94.20 4.30 1.20 0.30
2023 94.20 4.40 1.20 0.30

2.2 Imputation

This section deals with imputing the remaining missing values. Chapter 3 tries

to classify cars into segments by analysing their technical data which requires a

complete dataset. To get some idea of the problem’s scope, tables 2.2 and 2.3 show

the proportions of missing data. Most problematic is the share of about 15% to

30% missing data in vehicle length, width and height. This information is crucial

in classifying cars. All other features are included in the imputation process as

well, though imputated data is not used in any further analysis in this paper except

indirectly due to the inferred vehicle segment. Imputation models are estimated for

each year separately, because vehicle’s technical data obviously change over time

(e.g. bigger, heavier, etc.).
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Table 2.2: Missing values in %

year pollution top speed co2 length width height axle 1
class emissions load

2014 0.10 1.50 34.50 15.90 28.30 16.80 1.60
2015 0.00 1.60 29.70 17.10 29.50 18.10 1.70
2016 0.00 1.60 25.50 18.00 30.30 19.00 1.60
2017 0.00 0.80 21.00 18.10 30.50 19.10 0.80
2018 0.00 0.80 18.20 18.80 31.00 19.80 0.80
2019 0.00 0.70 15.70 19.20 31.20 20.40 0.80
2020 0.00 0.70 13.50 19.50 31.20 20.90 0.70
2021 0.00 0.60 11.70 18.80 30.00 20.10 0.60
2022 0.00 0.40 10.50 18.10 28.80 19.40 0.40
2023 0.00 0.30 10.70 17.40 27.70 18.60 0.30

Table 2.3: Missing values in % (cont.)

year owner’s owner’s engine engine no. of no. of drive no of seats
sex age output size axles axles

2014 7.40 7.40 0.10 3.10 3.10 3.10 0.10
2015 7.40 7.40 0.10 2.90 2.90 2.90 0.10
2016 7.60 7.60 0.10 2.80 2.80 2.80 0.10
2017 8.00 8.00 0.00 2.70 2.70 2.70 0.00
2018 8.00 8.00 0.00 2.60 2.60 2.60 0.00
2019 8.20 8.20 0.00 2.40 2.40 2.40 0.00
2020 8.80 8.80 0.00 2.40 2.40 2.40 0.00
2021 8.70 8.70 0.00 2.30 2.30 2.30 0.00
2022 8.90 8.90 0.00 2.30 2.30 2.30 0.00
2023 9.20 9.20 0.00 2.30 2.30 2.30 0.00

Many different methods exist to impute missing values. Currently, the most

powerful ones seem to be “MICE” and “MIDAS” with “MIDAS” having better per-

formance (Gondara and Wang, 2018). “MIDAS” is short for multiple imputation

using de-noising auto-encoders. An auto-encoder belongs to the class of neural net-

works. Before going into MIDAS’ details, a basic understanding of neural networks

is required. A simple feed forward neural network is a supervised learning method

matching input data x to the desired output data y. It consists of an input layer,

an output layer and multiple hidden layers between them. In mathematical terms

(Goodfellow et al., 2016, pp. 168)

y = ϕ†(W†ϕA(WA . . . ϕ1(W1ϕ∗(W∗x+ b∗) + b1) . . .+ bA) + b†),

the network is a composition of the input layer function ϕ∗, a total of 1 to A hidden

layer functions ϕ1, . . . , ϕA and a final output layer function ϕ†. Each layer has mul-

tiple nodes which take in multiple inputs from previous layers. In a fully connected
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network, each node has all previous outputs as inputs available. The number of

nodes within a layer is referred to as the layer’s size. Each node then applies the

layer function ϕ to its scaled (by a matrix W) and shifted (by a vector b) input

values. Choosing the ϕ, the number of layers and the layer’s size has to be done

beforehand. The benefits of neural networks can be exploited by choosing the ϕ as

non-linear functions (otherwise it is just a simple linear model).

The difficult task is optimizing the W and the b. Stochastic gradient descent

is the algorithm used for this step. As the name already implies, the gradient

of a loss function is needed. The gradient is computed by the efficient back-

propagation algorithm. But first, the loss function needs to be considered. Let

y be the desired output and ŷ the network’s actual output. If both are continu-

ous, the loss is calculated as l(ŷ, y) =
√

1
n

∑N
i=1(ŷi − yi)2, the root mean squared

error (RSME). If the variables are binary or categorical, the loss function becomes

l(ŷ, y) = − 1
n

∑N
i=1

∑K
j=1 yijln(ŷij), where yi = (0, . . . , 0, 1, 0, . . . 0) indicates which of

K class yi belongs to and ŷij is the models estimated probability of yi belonging to

class 1 ≤ j ≤ K(Lall and Robinson, 2023). This is similar to the concepts in logistic

regression and is referred to by cross-entropy.

After the models first run (called epoch) with random weights, the resulting loss

is calculated as lθ(ŷ, y), where θ is the set of all parameters (the W and b) used to

calculate ŷ. Recall that ŷ is the result of composing the ϕ. Optimizing the weights

by minimizing the loss requires calculating the loss function’s gradient. The obvious

solution is to iteratively apply the chain rule of calculus. This is the basic idea

behind the back-propagation algorithm. Consider the function composition f(g(x))

with notation g(x) = y and f(y) = z, the gradient becomes (Goodfellow et al., 2016,

p. 207)

∇xz =

(
∂y

∂x

)T

∇yz,

with ∂y
∂x

being the hessian matrix. The back-propagation algorithm calculates the

gradients by storing and reusing intermediate results. This speeds up the computa-

tion by avoiding duplicate calculations (Goodfellow et al., 2016, p. 210).

The learning (i.e. modifying θ) stochastic gradient descent does is simply setting

θnew = θold − ε∇θl,

where ε is called the learning rate and ∇θl is the loss function’s gradient with regard

to θ (Goodfellow et al., 2016, p. 152). As only the first derivative is used, it is a

simpler method than e.g. Newton–Raphson. The complexity is reduced even further

by not evaluating ∇θl for all observations. Instead, only a random sample called

mini-batch is used (hence the name stochastic gradient descent). This does not lead
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to optimal results, but often to good enough results. Those are the basic building

blocks for a feed forward neural network.

“MIDAS” uses auto-encoders, which can best be understood as being two feed

forward neural networks chained together. The first one, called “encoder” takes

the input values and is forced to output a representation in a lower dimensional

space. The second network, the “decoder” takes this dimensionality reduced input

and tries to recreate the original output. This is an unsupervised learning method,

as the target output is the same as the input (Goodfellow et al., 2016, p. 396). In

this context, missing data can be thought of data being reduced in dimensionality.

The obvious solution for the network is to learn the identity function. To avoid this

outcome, “MIDAS” needs to deploy some tweaks to prevent over fitting. The first

measure is to corrupt the input by introducing an additional 20% of missing values

(encoded as zeros) at each training epoch (not just once at the beginning of the

training). The second measure is to randomly drop some nodes in the hidden layer

of the encoder (default probability for a drop-out is 50%) (Lall and Robinson, 2022).

For the encoder part of the auto-encoder, the l-th hidden layer function becomes

Wlvϕl(x
(l−1) + bl), where v ∼ Bern(p = 0.5).

The non-linear function ϕ MIDAS uses is called an exponential linear unit (ELU)

given by (Lall and Robinson, 2023)

ϕ(x) =

{
α(exp(x)− 1) x ≤ 0

x x > 0
,

where α > 0 is added to the parameters to be optimized (θ). The output layer

function ϕ† depends on the type of variable (Lall and Robinson, 2023)

ϕ†(x) =


x if x continuous
1

1+exp(−x)
if x binary(

exp(x1)∑K
i=1 exp(xi)

, . . . , exp(xK)∑K
i=1 exp(xi)

)T

if x categorical

The output function for categorical data is the softmax function, which scales an

n-dimensional input vector to a vector that sums up to 1 and can be interpreted as

the probabilities of a multinomial distribution. The loss is calculated between the

original input (not the corrupted one that gets fed into the network) and only for

observations that were originally not corrupted. The loss function is furthermore

modified to include an extra loss for having big weighs in θ by adding λ||θ||2 to l.

Similar to the idea employed in stochastic gradient descent, only a small mini-batch

sample is used to train the model. MIDAS is implemented in the rMIDAS package

(Robinson et al., 2022), which uses a python interface to the Alphabet / Google Inc.

sponsored TensorFlow library.
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For the vehicle dataset a network structure of two hidden layers, each one with

50 nodes proved to be satisfactory. The number of epochs (learning iterations) is

determined by splitting the complete data into a training and evaluation set and

comparing imputation losses. Figure 2.1 shows the error scores at different training

epochs. Each reporting interval is equal to three training epochs. The red crosses

indicate the minimum loss for each variable type. A good choice seems to reached

at reporting interval 6 (i.e. 18 training epochs).

Figure 2.1: Imputation validation

3 Classifying data

Obviously, not all cars are equal. The federal vehicle office publishes every year

statistics on car segments (KBA, 2023a). Closer examination of the federal statis-

tics reveal the most popular car models in each category, though this list is non-

exhaustive. There obviously exists an exhaustive list of which car model belongs to

which segment, but it is not available. A phone call confirmed that segment statistics

are done by an external service provider. The model names for each segment from

table (KBA, 2023a) are extracted, and regular expressions are used to match the

names to the corresponding manufacturer and model ID in the (KBA, 2023b) table
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already discussed in chapter 2. The manufacturer and model ID are then matched

against the municipal’s vehicle database. Most of those segments are recognized by

the European Commission, but there are some subtle differences as outlined in table

3.1. The following analysis deals only with cars (i.e. maximum weight of 3,500kg).

Table 3.1: Car segments

German classification European classification EU Segment code
Mini Mini A
Small Small B
Medium Medium C
Large Large D
Executive Executive E
Luxury Luxury F
Sport utility vehicle

Sport utility J
All-terrain vehicle
Sports Sports S
Mini-van

Multi-purpose MBig-van
Utilities
Motorhome n/a n/a

Special considerations must therefore be taken when talking about the utilities and

motorhome segments as these usually include vehicles regarded as lorries. Table 3.1

differentiates between sport utility vehicles (SUV) and all-terrain vehicles (ATV).

The main difference is that ATVs can be used off-road (e.g. have four-wheel drive)

whereas SUVs just look as if they could.

Strangely, there is no publicly available technical definition of vehicle segments

(e.g. cars over 300hp belonging to segment S). Instead, car manufacturers do the

classification by themselves based on some non-published rules. The following sec-

tion tries to find a rule for classifying cars into segments based on the car’s technical

data. The following variables are used:

• top speed

• length in mm

• height in mm

• width in mm

• first axle load in kg

• engine output in kW

• kerb weight in kg
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• number of axles (2 or 3)

• number of drive axles (1 or 2)

• number of seats.

The current consensus on which classification method seems to recommend neural

network based approaches for unstructured data (e.g. text, audio, pictures, videos)

and gradient boosted trees (especially xgboost) for structured data (Chollet et al.,

2022). Furthermore, xgboost has a speed advantage compared to neural networks.

The basic idea behind xgboost is outlined below.

To get some intuition into classification trees consider the following simple ex-

ample: If a car has more than 300hp, classify as sports car. If not and if number

of seats is greater than eight, classify as big-van, else continue down the remaining

tree. In formal terms, a classification tree splits the feature space into T disjoint

multidimensional boxes Ri. Let m be the number of features (i.e. length, height,

width, mass, etc.), s the number of labels (i.e. 13) and xi = (xi,1, . . . , xi,m)
T be the

features of car i. A tree q is then defined as (Hastie et al., 2009, p. 305):

q(xi) =
T∑
i=1

wiI{xi ∈ Ri} with
⋃̇T

i=1
Ri = Rm, and wi ∈ R

wi is a weight for the leave / basket xi has been classified into. To construct a tree,

three decisions need to be taken: The first one is on which feature (e.g. number of

seats) to split the tree. The second one is on which value the split should be done

(e.g. > 8 or ≤ 8). And the last one is when to stop splitting the tree. In order

to find an optimal tree, the set of cars ending up in one basket should ideally all

have the same label yi (i.e. segment). After all training data have been distributed

into the baskets, the empirical distribution function of the labels is calculated for

each basket, i.e. counting the cars corresponding to each label divided by all cars

in basket w. The resulting probability mass function is called qw and qw,i refers to

the probability of label i within basket w. This is used to construct a loss function

between the true label yi and the estimated label ŷi:

l(ŷi, yi) = −
s∑

i=1

ln(qw,i)I{yi = i} with w = ŷi

This loss function is also referred to as cross-entropy (Martinez and Stiefelhagen,

2019). The further qw,i (the probability of guessing the correct label) is away from

1, the exponentially higher the cost. Minimizing the loss function allows for finding

the locally best split points by finding the best split points for all features and then

choosing the feature and split point with minimal loss. Without regularization these
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results in constructing a tree having zero loss by assigning each observation its own

exit node. This is clearly undesirable. Therefore, a punishing factor γ for having a

tree with many exit nodes T is added to the loss function L:

L =
N∑
i=1

l(ŷi, yi) + γT, γ > 0.

For simple classification problems, this approach might already be sufficient. More

complex problems require the combination of multiple trees (an ensemble). Unfor-

tunately this also means sacrificing the interpretability of the model. The method of

combination “xgboost” uses is boosting. The following part describes how “xgboost”

works and is based on the works of (Chen and Guestrin, 2016).

“xgboost” works with K classification trees. The prediction of a car’s segment

ŷi now becomes

ŷi =
K∑
i=1

qk(xi)

the sum over K trees and the new loss function extends to

L =
N∑
i=1

l(ŷi, yi) +
K∑
j=1

(
γTk +

1

2
λ||wk||2

)
,

where wk is the vector of all weights of tree k. The remaining questions are how to

add a tree and how to optimize L. Boosting is a method to sequentially add trees

as needed. The loss function with t trees L(t) and corresponding prediction ŷ
(t)
i is

L(t) =
N∑
i=1

l[yi, ŷ
(t−1)
i + qt(xi)] + γTt +

1

2
λ||wt||2.

The added tree t should be the one, which decreases above’s loss function the most

(if at all). The idea is to differentiate L(t) and search for the optimum. This can

not be done directly. Instead, a second order taylor approximation is used:

L(t) ≈
N∑
i=1

[l(yi, ŷ
(t−1)
i ) + giqt(xi) +

1

2
hiq

2
t (xi)] + γTt +

1

2
λ||wt||2,

where

gi =
∂l(yi, ŷ

(t−1)
i )

∂ŷ
(t−1)
i

and
∂l(yi, ŷ

(t−1)
i )

∂2ŷ
(t−1)
i

.

This why the method is called gradient boosting. When optimizing for qt the first

term l(yi, ŷ
(t−1)
i ) can be ignored. Let Ij = {1 ≤ i ≤ n|qt(xi) = j} be the indices of
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observations qt puts into basket j. The optimal weights wt for a given tree qt are

wj = −
∑

i∈Ij gi∑
i∈Ij hi + λ

.

The only remaining question is how to split the tree. For a proposed split of the

observations in I into the two baskets IR and IR, the loss reduction is

LReduction =
1

2

[ (∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ.

The algorithm for finding the best split according to above’s formula given the

observations in I is

1. Set G =
∑

i∈I gi, H =
∑

i∈I hi and score = 0

2. repeat steps 3 to 7 for k=1 to m

3. GL = 0 and HL = 0

4. repeat steps 5 to 7 for j in {sort I by xjk}

5. GL = GL + gj and HL = HL + hj

6. GR = G−GL and HR = H −HL

7. score = max
(
score,

G2
L

HL+λ
+

G2
R

HR+λ
− G2

H+λ

)
8. split with maximum score

The two hyperparameters λ and γ need to be set manually in a trial-and-error

approach by reserving 20% of the training set as evaluation set and testing the model

on the evaluation set. Xgboost is implemented in the R-package xgboost (Chen,

He, et al., 2023). In order to ensure consistency one global model is estimated on

the imputed datasets and subsequent applied to the data for each year.

Figure 3.1 shows the classification results. Comparing the results to the federal

statistics shows a higher proportion of minis and small cars. This is to be expected

as Dortmund is a metropolitan area with usually smaller cars than in rural areas.

Overall the results are within the same range, which makes the classification plau-

sible. About one quarter of the cars is classified by xgboost and the other three

quarter are direct matches. Tables 3.2 and 3.3 show the absolute numbers and pro-

portions of all cars (private and commercial/ public) in each segment. There is a

general trend of an increasing number of cars. The most remarkable trend is the

increase in SUVs from about 3% in 2014 to 10% in 2023, whereas the proportion of

small, medium and large cars all drop.
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Figure 3.1: Streamgraph of car segments

Table 3.2: Segment Analysis (absolute frequencies)

Segment 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
ATV 6715 7625 8623 9442 10598 11311 12649 14002 14766 15547

Big-van 10884 11001 11161 11277 11411 11387 11297 11252 11078 10944
Small 61758 62106 62177 62281 62373 62815 62263 62228 61288 60588

Medium 74833 75454 76555 77703 78159 78245 78281 78542 77957 76692
Mini-van 8333 9028 9608 9963 10387 10627 10909 10934 10864 10652

Mini 20785 21380 22383 23451 24093 24988 25860 25821 25840 25336
Large 46708 45727 45247 44645 43727 42557 41464 41076 40563 39783

Executive 8019 8013 7888 7791 7405 6987 6604 6572 6583 6383
Luxury 2160 2326 2474 2691 2865 3130 3337 3746 3958 4091
Sports 5421 5449 5600 5834 5966 6088 6104 6246 6214 6265
SUV 6968 8568 10026 11701 14023 16809 20890 24108 26974 29614

Utilities 5723 5645 5758 5889 5925 6062 6149 6436 6397 6455
Motorhome 1836 1886 1902 1953 2021 2085 2129 2250 2313 2419

4 Visualizing data

Chapters 2 and 3 provide geocoded datasets for different groups of vehicles. The

first step in analysing the data is to visualize them on a map. The naive approach is

to divide the map into grid cells, count the vehicles in each grid, encode the counts

into grouped colours and plot the resulting grid. This yields a rough / uneven map,

which needs to be smoothed. Keep in mind, that vehicles move, and the smoothing

is done in reality by people looking for parking lots and thereby spreading out the

vehicle mass. A very common way to smooth an empirical distribution in a spatial

context is to use a method called kernel density estimation.

A one dimensional kernel density estimator based on n samples x1, . . . xn is de-

14



Table 3.3: Segment Analysis (relative frequencies in %)

Segment 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
ATV 2.60 2.90 3.20 3.40 3.80 4.00 4.40 4.80 5.00 5.30

Big-van 4.20 4.20 4.10 4.10 4.10 4.00 3.90 3.80 3.80 3.70
Small 23.70 23.50 23.10 22.70 22.40 22.20 21.60 21.20 20.80 20.60

Medium 28.80 28.60 28.40 28.30 28.00 27.60 27.20 26.80 26.40 26.00
Mini-van 3.20 3.40 3.60 3.60 3.70 3.80 3.80 3.70 3.70 3.60

Mini 8.00 8.10 8.30 8.50 8.60 8.80 9.00 8.80 8.80 8.60
Large 18.00 17.30 16.80 16.30 15.70 15.00 14.40 14.00 13.80 13.50

Executive 3.10 3.00 2.90 2.80 2.70 2.50 2.30 2.20 2.20 2.20
Luxury 0.80 0.90 0.90 1.00 1.00 1.10 1.20 1.30 1.30 1.40
Sports 2.10 2.10 2.10 2.10 2.10 2.20 2.10 2.10 2.10 2.10
SUV 2.70 3.20 3.70 4.30 5.00 5.90 7.30 8.20 9.20 10.00

Utilities 2.20 2.10 2.10 2.10 2.10 2.10 2.10 2.20 2.20 2.20
Motorhome 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.80 0.80 0.80

fined as (Wasserman, 2006, p. 132):

f̂n(x) =
1

n

n∑
i=1

K

(
x− xi

h

)
,

where h > 0 is the bandwidth and K is a kernel function that needs to satisfy

(Wasserman, 2006, p. 55):

•
∫
K(x)dx = 1

•
∫
xK(x)dx = 0

• σ2
K ≡

∫
x2K(x)dx > 0.

The choice of kernel function is of minor concern compared to the choice of band-

width. This paper uses the commonly used Epanechnikov kernel defined as (Wasser-

man, 2006, p. 55):

K(x) =
3

4
(1− x2)I(|x| ≤ 1).

Kernel density can be understood as drawing the kernel function above each sample,

summing up the function values and dividing by the number of samples. The last

step (dividing by the number of samples) will be skipped, because time series com-

parisons are made and the total number of vehicles differs between different years.

Those differences are important and should not be discarded, which means following

references to kernel density estimation will be made to the unnormalized density,

which technically is not a density.

Figure 4.1 shows a simple example with five data points. Selecting the bandwidth

h is the crucial part of any density estimation. If the distribution is multi-modal
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Figure 4.1: Example kernel density estimation

(which is often the case in spatial data, see below) there may not be one global band-

width, which produces sufficient results everywhere. To overcome this limitation,

local adaptive bandwidths can be used, i.e.

f̂n(x) =
1

n

n∑
i=1

K

(
x− xi

hi

)
,

the bandwidths hi are individually selected for each point. The general idea is to

require less smoothing where many samples are located and to require more smooth-

ing where fewer samples are located, i.e. choosing the bandwidth inversely to the

unknown density. The following sections generalize the kernel density estimation to

two dimensions, by plugging the ellipse equation into above’s kernel density formula

and finding methods to adaptively scale the ellipsis.
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4.1 Delaunay tessellation

The key to local adaptive bandwidth density estimation is finding how much density

mass is around a point and scaling the bandwidth inversely to that mass. This can

be done e.g. by triangulation the convex hull of the coordinate points by a Delaunay

tessellation. Delaunay’s method can be thought of as calculating the area around

a point till the next point. Every point is one address. It does not deal with the

situation where multiple cars share an address. This will be covered later on. The

following steps are illustrated by a simple toy example. Figure 4.2 shows a map with

Figure 4.2: Coordinates of vehicles

10 coordinate points. The number next to each point is the number of vehicles at

that coordinate, e.g. two vehicles are at the coordinate x = 3 and y = 2. The first

step is to calculate the Delaunay triangulation of the coordinates.

To provide some intuition to the Delaunay triangulation, one should first consider
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the Voronoi / Dirichlet tessellation. Let P = {p1, . . . , pn} with pi ∈ R2 1 ≤ i ≤ n be

the coordinate points which n ≥ 3 and not all P collinear or four points co-circular.

The Voronoi polygon of point pi is defined by (D. Lee and Schachter, 1980)

V (i) = {x ∈ R2|d(x, pi) ≤ d(x, pj), ∀i ̸= j and 1 ≤ i, j ≤ n}.

This can be thought of a process where circles start simultaneously expanding at the

same rate at all points until they make contact with the neighbouring cells. Voronoi

polygons for the points on the convex hull of the coordinates continue to infinity

in the direction away from the convex hull. The contact lines between Voronoi

polygons are called Voronoi edges and the knots are called Voronoi vertices. In a

two-dimensional space, a Voronoi edge is always created by two coordinate points.

Each point is on one side of the edge and all points on the edge have the same distance

to the forming points. The Voronoi vertices are created where three Voronoi edges

meet. By construction, the Voronoi vertex is equidistant to the forming points of its

Voronoi edges. This implies that no other coordinate point can be within the circle

centred at the Voronoi vertex and having a radius equal to the distance between the

vertex and its three forming points.

Connecting the three forming points leads to a triangle within the circle around

the vertex. This triangle is called a Delaunay triangle. Applying the aforementioned

steps to all Voronoi vertices creates a tessellation of the convex hull of all coordinate

points made out of triangles (D. Lee and Schachter, 1980). Figure 4.3 shows the

Voronoi polygons and the Delaunay tessellation for the toy example. The solid lines

show the Delaunay tessellation and the dashed lines show the Voronoi cells. This

plot has been made with the R-package deldir (Turner, 2021).

The vertices of those triangles are always coordinate points. In order to use the

triangulation for bandwidth adoption, all triangles from the Delaunay tessellation

that share a certain coordinate point and all other coordinate points that establish

those triangles are selected. Then the minimum volume encircling ellipse around

those coordinate points is calculated and fed into the Epanechnikov kernel.

But first, the Delaunay tessellation needs to be calculated. The algorithm to

construct the Delaunay tessellation by Bowyer, 1981 andWatson, 1981 is an iterative

process. The following algorithm is taken from Sloan and Houlsby, 1984. It starts

by defining a “super triangle” that encloses the convex hull of all coordinate points.

Each point is than added one by one.

1. Sort (p1, . . . ,n ) in ascending order of their x-coordinate.

2. Define the vertices of the super triangle in anticlockwise order and flag the

super triangle as incomplete.
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Figure 4.3: Voronoi and Delaunay tessellations

3. Repeat steps 4 to 12 until the list of points to be triangulated is exhausted.

4. Add new point with co-ordinates (Xnew, Ynew).

5. For each triangle which is flagged as incomplete, do steps 6 to 10.

6. Compute the coordinates of the triangle circumcentre, (Xc, Yc)), and

the square of its circumcircle radius R2.

7. Compute the square of the x-distance from the new point to the

triangle circumcentre D2
x = (Xc −Xnew)

2.

8. If D2
x ≥ R2, then the circumcircle for this triangle, flag this triangle

as complete and do not execute steps 8 and 9.

9. Compute the square of the distance from the new point to the triangle

circumcentre D2 = Dx
2 + (Yc − Ynew)

2.
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10. If D2 < R2 delete this triangle from the list of triangles formed and

store the three pairs of vertices which define its edges on a list of

edges. If D2 ≥ R2, then the triangle remains unmodified.

11. Loop over the list of edges and delete all edges which occur twice.

12. Form the new triangles by matching the new point with each pair of

vertices in the last of edges. The new point forms new triangles with each

pair of vertices on the boundary of the polygon formed by the intersected

triangles. Define each new triangle such that its vertices are always listed

in an anticlockwise sequence and flag at as incomplete.

13. Form the final triangulation by removing all triangles which contain one or

more of the super triangle’s vertices.

The following analysis uses the R-package delaunay (Laurent, 2022). Note that the

Sloan’s algorithm presented above runs extremely efficient in terms of CPU usage

and memory requirements even for very large datasets. Common kernel density

implementations for example require massive amounts of memory as will be shown

later.

4.2 Minimum area enclosing ellipse

The next step is to locate all the Delaunay triangles, that a certain coordinate point

is a member of. E.g. point (2,3) is part of the six triangles T1 = {(2, 1), (1, 1), (2, 3)},
T2 = {(1, 1), (1, 4), (2, 3)}, T3 = {(1, 4), (3, 4), (2, 3)}, T4 = {(3, 3), (3, 4), (2, 3)},
T5 = {(3, 3), (3, 2), (2, 3)} and T6 = {(3, 2), (2, 1), (2, 3)}. Those six triangles are

made from seven distinct points {(2, 3), (2, 1), (1, 1), (1, 4), (3, 4), (3, 3), (3, 2)}. The
next step is calculating a minimum area enclosing ellipse (MAEE) around the convex

hull of those points. An ellipse in centre form is defined as

E = {x ∈ R2|(x−c)′A(x−c) ≤ 1, with c ∈ R2 andA ∈ R2×2 symmetric and det(A) > 0}.

Its area is π√
det(A)

. This leads to an optimization problem minimizing the area

with the restriction of all points lying inside the ellipse. Moshtagh, 2005 show the

required steps to solve this problem. In mathematical terms

min det(A−1) subject to (xi − c)′A(xi − c) ≤ 1 ∀1 ≤ i ≤ n and A > 0,

which can also be expressed alternatively by parametrizing the ellipse as

E = {x ∈ R2 : ||Ex− b|| ≤ 1 ∀1 ≤ i ≤ n and A > 0}
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with E = A1/2 and b = A1/2c. The optimization problem becomes

min logdet(E−1) subject to ||Exi − b|| ≤ 1 ∀1 ≤ i ≤ n.

Finally, it is easier to work with an ellipse centred at the origin. This can be achieved

by a coordinate transformation qi = (x′
i, 1) into R3.

Figure 4.4: Minimum area enclosing ellipse

Khachiyan, 1996 provides the following optimized algorithm to solve the above

optimization problem:

1. Set

Q =

 x1 . . . xn

y1 . . . yn

1 1 1

 and u =
(

1/n . . . 1/n
)

2. Repeat steps 3 to 9 until err is below threshold
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3. X = Q ∗ diag(u) ∗Q′

4. M = diag(Q′ ∗X−1 ∗Q)

5. max = maximum(M) and j is the corresponding index to max

6. step = max−3
3max−3

7. unew = (1− step)u

8. unew[j] = unew[j] + step

9. u = unew and err = ||unew − u||

10. A = 1
2
∗ [P ∗ diag(u) ∗ P ′ − (P ∗ u) ∗ (P ∗ u)′]−1 and c = P ∗ u

Figure 4.4 shows the resulting ellipse for point (2,3). The R implementation by

(Lyons, 2011) is used. This process is iterated over all points and the resulting

ellipses are centred at its corresponding coordinate points. This is especially impor-

tant for coordinates on the convex hull of all points. Their ellipses’ centres can be

relatively far away, so the ellipses are recentred to avoid biases. Before the ellipse

equations can be fed into the Epanechnikov kernel function and summed up, some

adaptations are still needed.

4.3 Local adoptive kernel density estimation

Applying the above-mentioned method without further modifications leads to serious

“under smoothing”. Therefore, a global smoothing parameter is calculated, and the

ellipses are scaled in such a way that the median ellipse area is equal to the area

determined by the global smoothing estimate. Furthermore, the vehicle count at

each coordinate needs to be included in the scaling process as well as making sure

each ellipse covers at least one grid cell on the one hand, and is not unreasonably

large on the other hand.

The global bandwidth is calculated for the x- and y-coordinates separately. In

general, there are two commonly used methods to determine the smoothing band-

width based on the data. Recall the univariate kernel density estimator (Wasserman,

2006, p. 132)

f̂h(x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
.

The objective is to find some h, that minimizes some measure of the difference

between the estimated density f̂ and the true f called MISE:

MISE(h) = E
[∫

[f̂h(x)− f(x)]2dx

]
.
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MISE depends on the unknown f . The first way to solve this issue is to use a monte-

carlo simulation. This approach is referred to as “cross-validation”. Expanding

MISE yields

MISE(h) = E
[∫

f̂ 2
h(x)dx− 2

∫
f̂h(x)f(x)dx+

∫
f 2(x)dx

]
.

The first term can be directly calculated, and the third term does not depend on

h. The interesting part is the second term, which is estimated by cross-validation

(Wasserman, 2006, p. 127):∫
f̂h(x)f(x)dx =

∫
f̂h(x)dF (x) ≈

∫
f̂h(x)dFn(x) ≈

1

n

n∑
i=1

f̂(−i)(Xi),

where Fn(x) is the empirical cumulative density function and f̂(−i) is the density

estimate on the data without the i-th observation

f̂(−i)(x) =
1

n− 1

n∑
j=1,i ̸=j

1

h
K

(
x−Xj

h

)
.

There is no closed form solution to calculate the optimal h. It has to be done by

numeric optimization. Unbiased cross-validation is implemented in the R-function

bw.ucv, which assumes a Gaussian (normal) kernel and calculates the standard

deviation instead of h. For the Epanechnikov-kernel the bandwidth is
√
5 times the

standard deviation. The results need to scaled accordingly.

The second approach to find h is called plug-in estimation and is based on a

taylor series expansion of the variance and bias of MISE (Sheather, 2004)

MISE(h) =

∫
Bias(f̂h(x))

2dx+

∫
Var(f̂h(x))dx,

which results in an asymptotic MISE (AMISE) (Wand and Jones, 1994)

AMISE(h) =
R(k)

nh
R(k)+

h4

4
σ4
KR(f ′′), withR(K) =

∫
K2(x)dx, σ2

K =

∫
x2K(x)dx.

Taking the derivative of AMISE and solving for the optimal h yields (Heidenreich

et al., 2013)

hAMISE =

[
R(K)

σ4
KR(f ′′)n

] 1
5

.

Instead of estimating f , it is needed to estimate the unknown second derivative f ′′.

This requires itself some density estimation, i.e. a pilot bandwidth. Let R̂(f ′′) be

the estimator of R(f ′′), that will be plugged into the above equation (Sheather and
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Jones, 1991)

R̂(f ′′) =
1

n2α5

n∑
1≤i,j≤n

K

(
Xi −Xj

α

)
.

R̂(f ′′) depends again on a bandwidth α. Sheather and Jones propose to estimate α

by

α =

(
2K(0)

σ2
K

) 1
7

R(f ′′′)−
1
7
1

n7
.

Their procedure is implemented in the R-function bw.SJ. At this point, the process

is aborted, because the new problem is to estimate R(f ′′′), which runs into the same

problem as estimating R(f ′′). Instead, a normal rule of thumb is used to estimate

α (Sheather, 2004). This leads to the third and usually not recommended way.

Silverman’s rule of thumb (Silverman, 1986) estimates the bandwidth as

ĥ = 0.9×min

{
IQR

1.34
, sd

}
n− 1

5 ,

where sd is the standard deviation and IQR is the distance between the 75% and

the 25% quantile. Silverman’s rule is implemented in the R-function bw.nrd0

All of those approaches can be used to estimate the pilot bandwidth. It is

therefore needed to have some visual inspection. Keep in mind, that the global

bandwidth should be rather smooth. The more interesting local peaks will be covered

by the local bandwidth adaptations. To find some good recommendations, the toy

example will be disregard for a moment and the real data is used. Figure 4.5 shows

the x-coordinates of privately owned vehicles in 2023. The three lines show kernel

density estimations with bandwidths selected by cross-validation, plug-in and rule

of thumb methods. The lines are shifted in y-direction to separate them. The true

y-values are of no concern at this stage, as only the smoothing level needs to be

addressed. The plug-in as well as the cross-validation produce similar results, which

both lead to under smoothed results. Silverman’s rule of thumb is therefore selected

as global bandwidth scaling method. Based on the global bandwidths, scaling of

the ellipses’ area takes part in four stages:

1. divide the area by the number of cars at that coordinate

2. scale the areas so that the median area of all ellipses matches the area of the

global bandwidth ellipse

3. apply minimum scaling (every ellipse must cover at least one grid cell)

4. apply maximum scaling (no ellipse should be bigger than 20 times the mini-

mum ellipse)
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Figure 4.5: Global bandwidth selectors

Scaling an ellipse is done in terms of the eigenvalues of its matrix A. Figure 4.6

shows an ellipse and its two semi-axes. The eigenvectors of A define the direction

of the semi-axes and 1√
λ
, with λ being the corresponding eigenvalue, is the length of

the semi-axis. Scaling the ellipse is done by scaling both eigenvalues proportionally

according to the four-step procedure described above and reconstruction of the A

matrix based on the scaled eigenvalues λ′
1, λ

′
2:

Ascaled = Udiag(λ′
1, λ

′
2)U

−1, with U as a matrix with A’s eigenvectors.

This section ends with comparing the local adoptive method with the global

method. The main aim is to allow for more detailed information where the density

is high while still retaining the smoothing properties in areas with low density.
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Figure 4.6: Eigenvalues and eigenvectors of ellipse

Figure 4.7 show the results. The blue lines indicate Dortmund’s boroughs. This is

usually the highest available spatial resolution in municipal statistics. Both figures

in 4.7 use a grid size of 100m*100m and the same global bandwidth. The left figure

4.7a is created with the R-package MASSExtra by (Venables, 2023) and the right

figure 4.7b by the method described above. The right graph provides much more

details compared to the left graph, which means the main goal has been achieved.

Furthermore, it can be seen, that Dortmund actually consists of an inner city core

and a bunch of smaller former “villages”, that have been included into the city’s

boundaries over a timespan of centuries. Some caveats need to be mentioned. The

adoptive method has a much longer computation time. This is partly due to missing

optimizations. The global method has the disadvantage of requiring huge amount

of memory. Figure 4.7a took about 50GB of ram, whereas the right figure only

requested less than 16GB of ram. No further comparisons are made, because figure
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(a) Global bandwidth (b) Adoptive bandwidth

Figure 4.7: Comparison of methods

4.7a required access to different hardware.

5 Providing data

Kernel density estimation certainly produces information dense graphs for reports

and can be used as a starting point for deeper analysis. Those can be done either

by the statistical office itself or by interested third parties. A key part of official

statistics is providing accurate data to those third parties without sacrificing the

individual’s privacy. Strong and state-of-the-art confidentiality protection is a legal

requirement in almost all countries. Currently, many different data altering methods

are used to provide microdata. A good disclosure avoidance system should

• provide quantifiable confidentiality protection

• keep data alteration to a minimum

• be unbiased

• be transparent (e.g. no secret parameters or methods).

Unfortunately many systems currently in use by statistical offices are black boxes

and lack quantifiable protection guarantees. The cell-key method used by the Ger-

man statistical office for the Census 2022 relies on secret parameters, which thwart

any in-depth inspections. Those “security by obscurity” methods are wildly re-

garded as insufficient and insecure. A new method called “Differential privacy” by

(Dwork et al., 2006) which is already used by the 2020 U.S. census, addresses those

shortcomings.
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5.1 Differential privacy

The differential privacy idea is based on an attack model. Suppose the attacker

already knows the complete data except whether one single individual is in the data

or not. Let x and x′ be two databases, that differ on at most one individual. The

attacker is interested in T (x) =
∑

(xi), the total number of individuals. M(T (x))

is called a random ε-differentially private data alteration function iff:∣∣∣∣ln( Pr[M(T (x)) ∈ S]

Pr[M(T (x′)) ∈ S]

)∣∣∣∣ ≤ ε

for some ε > 0 and ∀ S ⊆ Image(M) (Dwork et al., 2006, p.6)

ε is called the privacy budget and allows quantifying confidentiality requirements.

The smaller ε the more privacy is guaranteed and the fewer data utility is provided.

From the definition two main questions arise.

• What is the random function M?

• How should ε be chosen?

Let ∆F be the sensitivity of T :

∆F = max |T (x)− T (x′)|.

Then

M(T (x)) := T (x) + Y, where Y ∼ Lap

(
∆F

ε

)
is a ε-differentially private mechanism (Dwork et al., 2006, p.6), where Lap(∆F

ε
)

refers to the double exponential or Laplace distribution with mean 0 and scale pa-

rameter ∆F
ε
. M works by adding laplacian noise to the true result in order to obscure

the difference between T (x) and T (x′). If T is the total number of individuals, T ’s

sensitivity is obviously 1. The same result holds for density estimation. In this case

a car’s or individual’s density mass would be concentrated in a single grid cell. In

general a laplace distribution with mean µ and scale parameter b has

• pdf: f(x) = 1
2b
exp

(
− |x−µ|

b

)
• cdf: F (x) = 1

2
+ 1

2
sgn(x− µ)

(
1− exp

(
− |x−µ|

b

))
• qf: F−1(p) = µ− b sgn(p− 1

2
)ln(1− 2|p− 1

2
|) (Abramowitz et al., 1988).

An example density plot of a laplace distributed random variable is provided in

figure 5.1. Adding laplacian noise creates a problem with count data or densities. If

T (x) is close to zero, adding laplacian noise can lead to negative values, which are

outside the target range.
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Figure 5.1: Laplace distribution density

5.2 Choosing ε

Unfortunately, the definition of differential privacy is not helpful in directly deter-

mining the right value for ε. Instead, ε should be related to some other easy to

interpret measure. J. Lee and Clifton, 2011 relate ε to the probability of an attacker

guessing the right value. Their approach can only be used for discrete/ count data,

as the probability of guessing a realization of a continuous random variable is always

zero. Therefore, this does not work for continuous density estimates. Pankova and

Laud, 2022 expand on J. Lee and Clifton, 2011 ideas and apply them to continu-

ous data. Their idea is to calculate the attacker’s guessing advantage. The prior

probability of guessing right within a distance of r is called Prpre(x). Let x be the

full dataset, x′ the dataset with one observation missing, d some distance measure,

r > 0, B(x, r) := {y ∈ R|d(x, y) ≤ r} and T the statistic of interest. The prior
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probability is

Prpre(x) := Pr(T (x′) ∈ B(T (x), r)).

The posterior probability Prpost(x) is the probability of guessing right after having

the additional information on x through the differentially private mechanism M

Prpost(x) := Pr(T (x′,M(T (x))) ∈ B(T (x), r)).

The aim is to limit

|Prpost(x)− Prpre(x)| ≤ γ

J. Lee and Clifton, 2011 show this is achieved if

ε ≤
−ln

(
p

1−p

(
1

γ+p
− 1

))
∆F

with p = Prpre(x). Because Prpre(x) is unknown, taking the derivative of the right

term with regard to p yields a minimum at p = 1−γ
2
.

Setting δ = 1
3
provides appropriate privacy protection for the density data. Fig-

ure 5.1 shows the resulting laplace noise for grid cells having a density of zero. The

probability of the noise to be between -4 and 4 is 96.9%. This gives an idea on the

magnitude for the added noise, though sometimes much higher / lower values are

possible. When plotting on a map with bin size 10 cars per ha, the plots of the

actual data and the confidentiality protected data are indistinguishable.

Other values are certainly possible and need to be addressed by the legal depart-

ments. Having chosen ε the remaining problem regards the potential for negative

values.

5.3 Truncating laplace noise

Densities are always non-negative between [0,∞), whereas the laplace distribution’s

domain is (−∞,∞). Adding laplacian noise to a density may lead to negative and

therefore impossible values. The obvious solution to this problem is to draw the

noise instead from a to (0,∞) truncated laplace distribution. This causes two new

problems:

• reduced randomness around small values due to truncation that has to be

compensated to uphold differential privacy safeguards, and

• positively biased random noise leads to biased results.

To compensate the first issue, the laplacian noise must be drawn from a distribution

with higher variance the closer the density is to zero. Croft et al., 2022 provide
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a formula for the needed variance adaptations. This formula requires the lambert

W function, which is the solution for z in the equation z = x exp(x). Figure 5.2

shows the graph of the lambert W function. It has two branches, the zero branch

W0 and the minus-one branch W−1. They meet at the point x = − 1
exp(1)

and y = 1.

If x ≥ 0, there is one solution for z = W0(x). If − 1
exp(1)

≤ x < 0, there are two

solution z1 = W0(x) and z1 = W−1(x). If x < − 1
exp(1)

there is no solution (Corless

et al., 1996). Numerical evaluation of the lambert W function is implemented in

the R-package “lamW” (Adler, 2015). According to Croft et al., 2022, the scale

Figure 5.2: Lambert W function

parameter of the laplace distribution for a restraint to the interval (0,∞) should be

b1 = − ∆F

W
(
− 1

2exp(1)

)
exp(1)ε
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at zero and at a point i∆F away from zero by

b2 = − i∆F exp(iε)σ1

WZ

(
−

2i∆F exp(−iε)exp
(
− i∆Fexp(−iε)

σ1

)
σ1

)
exp(iε)σ1 + i∆F

,

where WZ with Z ∈ {0,−1} denotes either the minus-one branch or the zero branch.

To determine the correct branch, one has to find the i for which the term inside WZ

yields −1/exp(1). This is done by a simple numerical optimization (R’s built-in

optimize function). Let cp be the result of above’s optimization. If i ≤ cp Z should

be zero and if i > cp Z should be −1.

Let’s have a look at an example for δ = 1/3 and ∆F = 1. Figure 5.3 shows on the

Figure 5.3: Example noise distributions

x-axis the true density value of a grid cell. On the y-axis the density of the laplace

noise to be added is shown. The closer the x values are to zero, the more variance
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the laplace distribution gets as desired. The horizontal line at y = 0.69 is the density

at µ for a Lap(µ, 1
ε
) distributed random variable. This is the distribution for i → ∞.

The further the x values are away from zero, the closer the density peaks reach the

limiting distribution. The picture further more shows the truncated negative parts

of the noise distributions in dashed lines, which is the source for the bias in the

current method.

5.4 Making the noise unbiased

One might argue that this bias is insignificant as it only affects small values. This is

not the case. Keep in mind, that the kernel density plots show multiple clusters with

high densities combined with vast “wastelands” of relatively low densities around

them. This violates basic accuracy demands for official statistics.

The idea is to not discard the negative noise as show in figure 5.3, but to add it

where appropriate. The law of total probability (Papoulis and Unnikrishna Pillai,

2002)

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2), with A1∪̇A2 = Ω

can be used to split a random variable into the sum of a negative and a positive

truncated random variable. When applying differential privacy to a spatial grid,

the first step is to add the positive noise part to all grid cells, while retaining the

negative noise part. In the second step, the negative noise for each randomly shuffled

grid cell is selected. All grid cells, to which the negative noise can be added without

getting negative are searched for. From those grid cells, the one with the lowest

euclidean distance to the current grid cell is selected. If there are more than one

with identical distance, a random one is chosen. The negative noise is added to that

grid cell. This procedure makes the noise unbiased.

Consider the example from the end of the previous chapter (total number of

privately owned cars in 2023). The total number is 267,121 adding only the positive

noise changes the total number to 295,386. This is a 10.5% increase and therefore

not acceptable. When subtracting the negative noise, the new total number changes

to 269568.3. An increase of 0.9% is much more acceptable. Table 5.1 show the

Table 5.1: Distribution of distances between cells and their negative noise

Min. 1st Qu. Median Mean 3rd Qu. Max. No distance
100.2 100.2 100.2 278.7 223.9 5480.4 33935

distances in meters between the grid cell the negative noise belongs to and the cell

the noise got added to. The last column is the number of cells where the distance

is zero. A maximum distance of 5.5km is much, but this is the most extreme value

and in 75% the noise is within a radius of 225m, which is acceptable. Figure 5.4
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shows the relative noise (i.e. the true value of a grid cell divided by the value after

differential privacy obfuscation) depending on the true value. The further the true

value is away from 0, the smaller the relative deviations get.

Figure 5.4: Relative noise distribution by true value

6 Analysing data

This chapter analyses the in chapter 4 created density plots for all cars (see appendix

A), electric cars (appendix B) and SUV (appendix C) owned by a private person.

Electric cars and SUVs have been selected because those subgroups show the greatest

changes over the last ten years. This caused some troubles, when selecting proper

plot bins. They have been handcrafted to avoid empty plots. For electric cars the

grid size had to be expanded from the 100m*100m to a 500m*500m grid to make
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Figure 6.1: Total Number of cars

plots somewhat comparable. The SUV and electric car plots both show an emerging

trend. Figure 6.1 shows the total number of cars by year. The spatial distribution

illustrate that those trends start in the southern part of Dortmund and slowly travel

northbound. This trend can be explained by Dortmund’s social structure. The

proportion of rich people in the south is much higher than in the northern parts.

Likewise, the proportion of poor people is lower in the southern parts compared to

the northern ones. Given that both SUVs and electric cars are very expensive, the

social structure is reflected on the maps. Apart from this general insights, some

more advanced methods to compare the maps should be applied. To give some

intuition to the problem take e.g. the data from 2014 and from 2023. Firstly, the

total number of vehicles has changed. Secondly, the distribution of vehicles has

changed (e.g. vehicles shift from the inner city parts to the outer city areas or from

north to south). To analyse changes in distribution the Kantorovich metric is used.
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The metric can best be understood by a small simile.

Imagine being in a garden equipped with a shovel and the task at hand is to

transform a patch of land shaped like the 2014 distribution into the 2013 distri-

bution. The problem is how to do it with the least amount of effort. Effort can

be quantified as the mass (amount) of dirt moved times the distance the dirt has

to travel. Additionally, a extra pile of dirt is needed, because there are more cars

in 2013 than in 2014. Minimizing the effort in mathematical terms leads to the

Kantorovich/Wasserstein distance (for obvious reasons also called earth mover’s

distance).

Initially assume the total mass for both distributions is equal (true density dis-

tribution). Let µ and ν be two discrete two-dimensional density distributions with

domains Tµ and Tν . The Wasserstein distance is defined as

W(µ, ν) = infπ∈Π(µ,ν)

∑
(a,b)∈Tµ×Tν

d(a, b)π(a, b),

where d is a distance measure between points a and b. Π is the set of all two-

dimensional joint probability distributions with marginal distributions µ and ν. In

other words, the Wasserstein distance minimizes the effort (π is the mass and d the

distance) of moving the dirt among all possible transportation plans Π. All π ∈ Π

can be identified with a matrix T ∈ Rk1k2 , where k1 and k2 are the number of grid

cells (in our case k1 = k2 := k), giving the probability of moving mass from one cell

to another one. All the 1-norm distances d can be calculated in advance and stored

in a matrix C ∈ Rk1×k2 , where the diagonal elements are zero as there is zero distance

between the same grid cells. Let µi and νi be the marginal probabilities evaluated

at grid cell 1 ≤ i ≤ k. Giving this notation, the problem can be reformulated as

minT∈Rk1k2

∑
1≤i≤j≤k TijCij

s.t. ∀1 ≤ i ≤ j ≤ k : Tij > 0∑
1≤i≤k Tij = νj ∀j ∈ {1, . . . , k}∑
1≤j≤k Tij = µi ∀i ∈ {1, . . . , k}.

Above’s problem is a linear program, which is solvable by e.g. the simplex algorithm

(Solomon, 2018). Going back to the original problem, the issue of differing total

numbers has not been addressed yet. The idea is to put the additional dirt (extra

mass) outside the grid into a virtual grid cell and define a fixed distance between the

virtual cell and the real cells. Form there on the computation goes on as usual. An

optimized algorithm for two-dimensional data is provided by Bassetti et al., 2020

and implemented in the R-package SpatialKWD (Gualandi, 2022).

Figure 6.2, 6.3 and 6.4 show the pairwise Kantorovich metric between the years

36



Figure 6.2: Wasserstein distance for privately owned cars

without virtual cells. The most interesting data can be found on the line above (or

equally below) the diagonal, which are the year by year distances. Keep in mind,

that the general change in the number of vehicles (see figure 6.1) is not reflected

in those images, because the values have been normalized. Those images show the

changes in the spatial distribution within the city. For all cars (see figure 6.2), the

Kantorovich year-by-year metric shows some stable changes which can be regarded

as normal fluctuation (between 0.14 and 0.21). This implies the growth in the

number of cars that occurred is more or less present in all areas of Dortmund. The

SUV plot in figure 6.4 shows a decreasing trend from 1.03 to 0.43 which means,

that in the early years around 2014 the structural distribution was still evolving.

This evolution is still going on, but will come to a standstill in the near future.

A similar, though more extreme development can be seen regarding electric cars

(see 6.3). The Kantorovich distances decreased from 3.68 to 0.3 within the last ten
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Figure 6.3: Wasserstein distance for privately owned electric cars

years. Though the changes in distribution will likely stall, the total number is still

expanding rapidly.

7 Conclusion

To conclude this paper, this section summarizes the main findings. From the point of

official statistics it is recommended to use fuzzy matching based on string distances

to geocode addresses. Manual encoding yields better results, but is infeasible for

huge data sets. Computing missing data can be done with de-noising auto-encoders

like the one provided by “MIDAS”. This data altering process may are difficult to

justify for an authority but simply removing records with missing data is serious

data alteration as well and from a statistician’s point of view much worse. Fur-

ther development is needed to allow the auto-encoders predict continuous variables
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Figure 6.4: Wasserstein distance for privately owned sport utility vehicles

within a restricted interval instead on the whole real line. Supervised classification

tasks on structural data should be conducted with xgboost. It often produces rea-

sonable results. Kernel density estimation can be used to visualize spatial data. The

methods provided for local bandwidth scaling work and create the desired results.

Unfortunately, they do not run fast enough to be used in practice yet. This can

be solved by optimizing the used code. To make confidentiality requirements as

transparent as possible, black-box methods should be avoided. Differential privacy

is the state-of-the-art method to do so. This approach can be expanded to cover

multivariate data. Finally, the Kantorovich distance is extremely useful in exploring

changes in spatial distributions over time. Most of the described methods can as

well be used with population data (which is the main share of all official statistics

data available at the municipal level).
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A Density plots privately owned cars

Figure A.1: Privately owned cars in 2014

Figure A.2: Privately owned cars in 2015
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Figure A.3: Privately owned cars in 2016

Figure A.4: Privately owned cars in 2017
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Figure A.5: Privately owned cars in 2018

Figure A.6: Privately owned cars in 2019
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Figure A.7: Privately owned cars in 2020

Figure A.8: Privately owned cars in 2021
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Figure A.9: Privately owned cars in 2022

Figure A.10: Privately owned cars in 2023
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B Density plots electric cars

Figure B.1: Privately owned electric cars in 2014

Figure B.2: Privately owned electric cars in 2015
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Figure B.3: Privately owned electric cars in 2016

Figure B.4: Privately owned electric cars in 2017
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Figure B.5: Privately owned electric cars in 2018

Figure B.6: Privately owned electric cars in 2019

50



Figure B.7: Privately owned electric cars in 2020

Figure B.8: Privately owned electric cars in 2021
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Figure B.9: Privately owned electric cars in 2022

Figure B.10: Privately owned electric cars in 2023
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C Density plots sport utility vehicles

Figure C.1: Privately owned sport utillity vehicles in 2014

Figure C.2: Privately owned sport utillity vehicles in 2015
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Figure C.3: Privately owned sport utillity vehicles in 2016

Figure C.4: Privately owned sport utillity vehicles in 2017
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Figure C.5: Privately owned sport utillity vehicles in 2018

Figure C.6: Privately owned sport utillity vehicles in 2019
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Figure C.7: Privately owned sport utillity vehicles in 2020

Figure C.8: Privately owned sport utillity vehicles in 2021
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Figure C.9: Privately owned sport utillity vehicles in 2022

Figure C.10: Privately owned sport utillity vehicles in 2023
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